Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Molecules ; 28(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2312914

ABSTRACT

The application of computational approaches in drug discovery has been consolidated in the last decades. These families of techniques are usually grouped under the common name of "computer-aided drug design" (CADD), and they now constitute one of the pillars in the pharmaceutical discovery pipelines in many academic and industrial environments. Their implementation has been demonstrated to tremendously improve the speed of the early discovery steps, allowing for the proficient and rational choice of proper compounds for a desired therapeutic need among the extreme vastness of the drug-like chemical space. Moreover, the application of CADD approaches allows the rationalization of biochemical and interactive processes of pharmaceutical interest at the molecular level. Because of this, computational tools are now extensively used also in the field of rational 3D design and optimization of chemical entities starting from the structural information of the targets, which can be experimentally resolved or can also be obtained with other computer-based techniques. In this work, we revised the state-of-the-art computer-aided drug design methods, focusing on their application in different scenarios of pharmaceutical and biological interest, not only highlighting their great potential and their benefits, but also discussing their actual limitations and eventual weaknesses. This work can be considered a brief overview of computational methods for drug discovery.


Subject(s)
Computer-Aided Design , Drug Design , Drug Discovery/methods , Computers , Pharmaceutical Preparations
2.
Sci Transl Med ; : eabq7360, 2022 Oct 04.
Article in English | MEDLINE | ID: covidwho-2241405

ABSTRACT

Protease inhibitors are among the most powerful antiviral drugs. Nirmatrelvir is the first protease inhibitor against the SARS-CoV-2 protease 3CLpro that has been licensed for clinical use. To identify mutations that confer resistance to this protease inhibitor, we engineered a chimeric vesicular stomatitis virus (VSV) that expressed a polyprotein composed of the VSV glycoprotein G, the SARS-CoV-2 3CLpro, and the VSV polymerase L. Viral replication was thus dependent on the autocatalytic processing of this precursor protein by 3CLpro and release of the functional viral polymerase L, and replication of this chimeric VSV was effectively inhibited by nirmatrelvir. Using this system, we applied nirmatrelvir to select for resistance mutations. Resistance was confirmed by retesting nirmatrelvir against the selected mutations in an additional VSV-based systems, in an independently developed cellular system, in a biochemical assay, and in a recombinant SARS-CoV-2 system. We demonstrate that some mutants are cross-resistant to ensitrelvir and GC376, whereas others are less resistant to these compounds. Furthermore, we found that most of these resistance mutations already existed in SARS-CoV-2 sequences that have been deposited in the NCBI and GISAID databases, indicating that these mutations were present in circulating SARS-CoV-2 strains.

3.
J Chem Inf Model ; 62(22): 5715-5728, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2096619

ABSTRACT

The prediction of ligand efficacy has long been linked to thermodynamic properties such as the equilibrium dissociation constant, which considers both the association and the dissociation rates of a defined protein-ligand complex. In the last 15 years, there has been a paradigm shift, with an increased interest in the determination of kinetic properties such as the drug-target residence time since they better correlate with ligand efficacy compared to other parameters. In this article, we present thermal titration molecular dynamics (TTMD), an alternative computational method that combines a series of molecular dynamics simulations performed at progressively increasing temperatures with a scoring function based on protein-ligand interaction fingerprints for the qualitative estimation of protein-ligand-binding stability. The protocol has been applied to four different pharmaceutically relevant test cases, including protein kinase CK1δ, protein kinase CK2, pyruvate dehydrogenase kinase 2, and SARS-CoV-2 main protease, on a variety of ligands with different sizes, structures, and experimentally determined affinity values. In all four cases, TTMD was successfully able to distinguish between high-affinity compounds (low nanomolar range) and low-affinity ones (micromolar), proving to be a useful screening tool for the prioritization of compounds in a drug discovery campaign.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Ligands , Protein Binding , SARS-CoV-2
4.
J Enzyme Inhib Med Chem ; 37(1): 1704-1714, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1886330

ABSTRACT

Since the outbreak of the COVID-19 pandemic in December 2019, the SARS-CoV-2 genome has undergone several mutations. The emergence of such variants has resulted in multiple pandemic waves, contributing to sustaining to date the number of infections, hospitalisations, and deaths despite the swift development of vaccines, since most of these mutations are concentrated on the Spike protein, a viral surface glycoprotein that is the main target for most vaccines. A milestone in the fight against the COVID-19 pandemic has been represented by the development of Paxlovid, the first orally available drug against COVID-19, which acts on the Main Protease (Mpro). In this article, we analyse the structural features of both the Spike protein and the Mpro of the recently reported SARS-CoV-2 variant XE, as well the closely related XD and XF ones, discussing their impact on the efficacy of existing treatments against COVID-19 and on the development of future ones.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Mutation , Pandemics/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
J Enzyme Inhib Med Chem ; 37(1): 1077-1082, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1788416

ABSTRACT

Despite a huge effort by the scientific community to determine the animal reservoir of SARS-CoV-2, which led to the identification of several SARS-CoV-2-related viruses both in bats and in pangolins, the origin of SARS-CoV-2 is still not clear. Recently, Temmam et al. reported the discovery of bat coronaviruses with a high degree of genome similarity with SARS-CoV-2, especially concerning the RBDs of the S protein, which mediates the capability of such viruses to enter and therefore infect human cells through a hACE2-dependent pathway. These viruses, especially the one named BANAL-236, showed a higher affinity for the hACE2 compared to the original strain of SARS-CoV-2. In the present work, we analyse the similarities and differences between the 3CL protease (main protease, Mpro) of these newly reported viruses and SARS-CoV-2, discussing their relevance relative to the efficacy of existing therapeutic approaches against COVID-19, particularly concerning the recently approved orally available Paxlovid, and the development of future ones.


Subject(s)
Chiroptera , Coronavirus 3C Proteases , Coronavirus , Animals , Chiroptera/virology , Coronavirus/enzymology , SARS-CoV-2
6.
Frontiers in endocrinology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1749287

ABSTRACT

The Omicron variant of SARS-CoV-2 (Spike mutant B.1.1.529) carrying more than 30-point mutations in its structure, of which 15 are localized in the receptor-binding domain (RBD), allows to hypothesize a relevant change in interactivity with ACE2. In previous reports we hypothesized that the worse outcome of the COVID-19 disease in diabetes mellitus condition could be related to the non-enzymatic glycation of ACE2 receptor and an in silico evaluation led to the demonstration that the number of interactions is decreased in comparison to the unmodified model, possibly shifting the virus attack through different, multiple alternative entry routes. Given the evidenced features of this variant, we aimed to investigate with a computational approach the characteristics of Omicron SARS-CoV-2 with respect to its binding to human ACE-2 receptor, in a particular population, namely people affected by diabetes mellitus, at risk for unfavorable outcomes of the COVID-19. The computational analysis, considering the case in which all the lysine residues in the system are subjected to non-enzymatic glycation, confirmed that lysine glycation causes a general loss of interactivity between wild-type (WT)-Spike-RBD and ACE2. In the Omicron variant, Lys417 mutates into an asparagine, preventing the possible non-enzymatic glycation of this residue. Therefore, if non-enzymatic glycation seemed to cause a shift in the way in which the virus enters the cell from the ACE2-mediated mechanism to other pathways, in the case of the Omicron variant the ACE2-mediated approach of the virus seems to remain an important event to take into account. Indeed, interaction profile analysis, together with molecular mechanics–generalized Born surface area (MM-GBSA) calculations, suggests that the Omicron-Spike-RBD maintains a higher affinity for ACE2 subsequently to non-enzymatic glycation with respect to WT-Spike-RBD. The finding of the present computational study may suggest a different clinical relevance of the Omicron variant for the diabetes mellitus field, also in the possible direction of a lower severity of the disease.

7.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-1667269

ABSTRACT

In the latest few decades, molecular docking has imposed itself as one of the most used approaches for computational drug discovery. Several docking benchmarks have been published, comparing the performance of different algorithms in respect to a molecular target of interest, usually evaluating their ability in reproducing the experimental data, which, in most cases, comes from X-ray structures. In this study, we elucidated the variation of the performance of three docking algorithms, namely GOLD, Glide, and PLANTS, in replicating the coordinates of the crystallographic ligands of SARS-CoV-2 main protease (Mpro). Through the comparison of the data coming from docking experiments and the values derived from the calculation of the solvent exposure of the crystallographic ligands, we highlighted the importance of this last variable for docking performance. Indeed, we underlined how an increase in the percentage of the ligand surface exposed to the solvent in a crystallographic complex makes it harder for the docking algorithms to reproduce its conformation. We further validated our hypothesis through molecular dynamics simulations, showing that the less stable protein-ligand complexes (in terms of root-mean-square deviation and root-mean-square fluctuation) tend to be derived from the cases in which the solvent exposure of the ligand in the starting system is higher.

8.
Sci Rep ; 11(1): 22860, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1532106

ABSTRACT

The worse outcome of COVID-19 in people with diabetes mellitus could be related to the non-enzymatic glycation of human ACE2, leading to a more susceptible interaction with virus Spike protein. We aimed to evaluate, through a computational approach, the interaction between human ACE2 receptor and SARS-CoV-2 Spike protein under different conditions of hyperglycemic environment. A computational analysis was performed, based on the X-ray crystallographic structure of the Spike Receptor-Binding Domain (RBD)-ACE2 system. The possible scenarios of lysine aminoacid residues on surface transformed by glycation were considered: (1) on ACE2 receptor; (2) on Spike protein; (3) on both ACE2 receptor and Spike protein. In comparison to the native condition, the number of polar bonds (comprising both hydrogen bonds and salt bridges) in the poses considered are 10, 6, 6, and 4 for the states ACE2/Spike both native, ACE2 native/Spike glycated, ACE2 glycated/Spike native, ACE2/Spike both glycated, respectively. The analysis highlighted also how the number of non-polar contacts (in this case, van der Waals and aromatic interactions) significantly decreases when the lysine aminoacid residues undergo glycation. Following non-enzymatic glycation, the number of interactions between human ACE2 receptor and SARS-CoV-2 Spike protein is decreased in comparison to the unmodified model. The reduced affinity of the Spike protein for ACE2 receptor in case of non-enzymatic glycation may shift the virus to multiple alternative entry routes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Hyperglycemia/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/physiology , COVID-19/metabolism , COVID-19/pathology , Computational Biology/methods , Computer Simulation , Humans , Hyperglycemia/immunology , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/physiology
9.
ChemMedChem ; 16(13): 2075-2081, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1384144

ABSTRACT

Computational approaches supporting the early characterization of fragment molecular recognition mechanism represent a valuable complement to more expansive and low-throughput experimental techniques. In this retrospective study, we have investigated the geometric accuracy with which high-throughput supervised molecular dynamics simulations (HT-SuMD) can anticipate the experimental bound state for a set of 23 fragments targeting the SARS-CoV-2 main protease. Despite the encouraging results herein reported, in line with those previously described for other MD-based posing approaches, a high number of incorrect binding modes still complicate HT-SuMD routine application. To overcome this limitation, fragment pose stability has been investigated and integrated as part of our in-silico pipeline, allowing us to prioritize only the more reliable predictions.


Subject(s)
Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/metabolism , Viral Matrix Proteins/chemistry , Binding Sites , COVID-19/pathology , COVID-19/virology , Databases, Protein , Humans , Ligands , Protease Inhibitors/metabolism , Retrospective Studies , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/metabolism
10.
J Enzyme Inhib Med Chem ; 36(1): 1646-1650, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1320278

ABSTRACT

The chemical structure of PF-07321332, the first orally available Covid-19 clinical candidate, has recently been revealed by Pfizer. No information has been provided about the interaction pattern between PF-07321332 and its biomolecular counterpart, the SARS-CoV-2 main protease (Mpro). In the present work, we exploited Supervised Molecular Dynamics (SuMD) simulations to elucidate the key features that characterise the interaction between this drug candidate and the protease, emphasising similarities and differences with other structurally related inhibitors such as Boceprevir and PF-07304814. The structural insights provided by SuMD will hopefully be able to inspire the rational discovery of other potent and selective protease inhibitors.


Subject(s)
Antiviral Agents/chemistry , Lactams/chemistry , Leucine/chemistry , Molecular Dynamics Simulation , Nitriles/chemistry , Proline/chemistry , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Humans , Lactams/pharmacology , Leucine/pharmacology , Ligands , Nitriles/pharmacology , Peptide Hydrolases/metabolism , Proline/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Software
11.
ChemMedChem ; 16(13):1996-1996, 2021.
Article in English | Wiley | ID: covidwho-1300378

ABSTRACT

The Front Cover summarizes the computational pipeline which characterises HT-SuMD, a computational protocol exploiting supervised molecular dynamics simulations to perform the posing of a small fragment library. In this study, HT-SuMD accuracy in anticipating the fragment-bound conformations has been validated using a dataset of 23 noncovalent complexes, recently identified through an X-ray crystallographic fragment screening against the SARS-CoV-2 main protease(Mpro). More information can be found in the Communication by Mattia Sturlese, Stefano Moro et al.

SELECTION OF CITATIONS
SEARCH DETAIL